Roots Analysis has done a detailed study on Gene Therapy Market (3rd Edition), 2019-2030, covering key aspects of the industry’s evolution and identifying potential future growth opportunities.
To order this 670+ page report, which features 190+ figures and 340+ tables, please visit https://www.rootsanalysis.com/reports/view_document/cell-therapy-manufacturing/285.html
Key Market Insights
For more information, please visit https://www.rootsanalysis.com/reports/view_document/gene-therapy-market-3rd-edition-2019-2030/268.html
Table of Contents
1. PREFACE
1.1. Scope of the Report
1.2. Research Methodology
1.3. Chapter Outlines
2. EXECUTIVE SUMMARY
3. INTRODUCTION
3.1. Context and Background
3.2. Evolution of Gene Therapies
3.3. Classification of Gene Therapies
3.3.1. Somatic and Germline Gene Therapy
3.3.2. Ex Vivo and In Vivo Gene Therapy
3.4. Routes of Administration
3.5. Mechanism of Action of Gene Therapies
3.6. Concept of Gene Editing
3.7. Advantages and Disadvantages of Gene Therapies
3.8. Ethical and Social Concerns Related to Gene Therapies
3.9. Future Constraints and Challenges Related to Gene Therapies
3.9.1. Concerns Related to Therapy Development
3.9.2. Concerns Related to Manufacturing
3.9.3. Concerns Related to Commercial Viability
4. GENE DELIVERY VECTORS
4.1. Chapter Overview
4.2. Viral Vectors
4.2.1 Types of Viral Vectors
4.2.1.1. Adeno-associated Viral Vectors
4.2.1.1.1. Overview
4.2.1.1.2. Design
4.2.1.1.3. Advantages
4.2.1.1.4. Limitations
4.2.1.2. Adenoviral Vectors
4.2.1.2.1. Overview
4.2.1.2.2. Design
4.2.1.2.3. Advantages
4.2.1.2.4. Limitations
4.2.1.3. Lentiviral Vectors
4.2.1.3.1. Overview
4.2.1.3.2. Design
4.2.1.3.3. Advantages
4.2.1.3.4. Limitations
4.2.1.4. Retroviral Vectors
4.2.1.4.1. Overview
4.2.1.4.2. Design
4.2.1.4.3. Advantages
4.2.1.4.4. Limitations
4.2.1.5. Other Viral Vectors
4.2.1.5.1. Alphavirus
4.2.1.5.2. Herpes Simplex Virus
4.2.1.5.3. Simian Virus
4.2.1.5.4. Vaccinia Virus
4.3. Non-Viral Vectors
4.3.1. Types of Non-Viral Vectors
4.3.1.1. Plasmid DNA
4.3.1.2. Liposomes, Lipoplexes and Polyplexes
4.3.1.3. Oligonucleotides
4.4. Methods of Transfection
4.4.1. Biolistic Method
4.4.2. Electroporation
4.4.3. Receptor Mediated Gene Delivery
4.4.4. Gene Activated Matrix (GAM)
5. REGULATORY LANDSCAPE AND REIMBURSEMENT SCENARIO
5.1. Chapter Overview
5.2. Regulatory Guidelines in North America
5.2.1. The US Scenario
5.2.2. The Canadian Scenario
5.3. Regulatory Guidelines in Europe
5.4. Regulatory Guidelines in Asia Pacific
5.4.1. Chinese Scenario
5.4.2. Japanese Scenario
5.4.3. South Korean Scenario
5.4.4. Australian Scenario
5.5. Reimbursement Scenario
5.5.1. Challenges Related to Reimbursement
5.6. Payment Models for Gene Therapies
6. COMPETITIVE LANDSCAPE
6.1. Chapter Overview
6.2. Gene Therapy Market: Clinical and Commercial Pipeline
6.2.1. Analysis by Phase of Development
6.2.2. Analysis by Therapeutic Area
6.2.3. Analysis by Type of Vector Used
6.2.4. Analysis by Type of Gene
6.2.5. Analysis by Type of Modification
6.2.6. Analysis by Type of Gene Therapy
6.2.7. Analysis by Route of Administration
6.3. Gene Therapy Market: Early Stage Pipeline
6.3.1. Analysis by Stage of Development
6.3.2. Analysis by Therapeutic Area
6.3.3. Analysis by Type of Vector Used
6.3.4. Analysis by Type of Gene
6.3.5. Analysis by Type of Modification
6.3.6. Analysis by Type of Gene Therapy
6.4. Gene Therapy: Special Designation Awarded
6.4.1. Analysis by Special Designation Awarded
6.5. Key Players: Analysis by Number of Product Candidates
6.6. Developer Landscape
6.6.1. Distribution by Year of Establishment
6.6.2. Distribution by Size of Developer
6.6.3. Distribution by Geographical Location
6.7. Regional Landscape
7. MARKETED GENE THERAPIES
7.1. Chapter Overview
7.2. Gendicine® (Shenzhen Sibiono GeneTech)
7.2.1. Company Overview
7.2.2. Development Timeline
7.2.3. Mechanism of Action and Vectors Used
7.2.4. Target Indication(s)
7.2.5. Current Status of Development
7.2.6. Manufacturing, Dosage and Sales
7.3. Oncorine® (Shanghai Sunway Biotech)
7.3.1. Company Overview
7.3.2. Development Timeline
7.3.3. Mechanism of Action and Vectors Used
7.3.4. Target Indication(s)
7.3.5. Current Status of Development
7.3.6. Manufacturing, Dosage and Sales
7.4. Rexin-G® (Epeius Biotechnologies)
7.4.1. Company Overview
7.4.2. Development Timeline
7.4.3. Mechanism of Action and Vector Used
7.4.4. Target Indication(s)
7.4.5. Current Status of Development
7.4.6. Manufacturing, Dosage and Sales
7.5. Neovasculgen® (Human Stem Cells Institute)
7.5.1. Company Overview
7.5.2. Development Timeline
7.5.3. Mechanism of Action and Vectors Used
7.5.4. Target Indication(s)
7.5.5. Current Status of Development
7.5.6. Manufacturing, Dosage and Sales
7.6. Imlygic® (Amgen)
7.6.1. Company Overview
7.6.2. Development Timeline
7.6.3. Mechanism of Action and Vectors Used
7.6.4. Target Indication(s)
7.6.5. Current Status of Development
7.6.6. Manufacturing, Dosage and Sales
7.7. Strimvelis® (Orchard Therapeutics)
7.7.1. Company Overview
7.7.2. Development Timeline
7.7.3. Mechanism of Action and Vectors Used
7.7.4. Target Indication(s)
7.7.5. Current Status of Development
7.7.6. Manufacturi
- C_TS462_1909 exam | C_TS462_1909 exam dumps | SAP C_TS462_1909 exam | C_TS462_1909 practice exam | C_TS462_1909 actual exam | C_TS462_1909 braindumps | C_TS462_1909 questions & answers | C_TS462_1
- A flexible working arrangement refers to scheduling that doesn’t present the constraints of a traditional job.
- That is the reason why you see ARM CPU-makers such as Ampere making CPUs such as the Altra Max which has a crazy 128 cores. This chip is specifically made for the cloud. You don’t need crazy sin
- Elemental published an extremely thorough guide to the Covid-19 vaccine, answering every possible question. The FAQ is being updated and added to adsafdsfs