How virus detectives trace the origins of an outbreak – and why it’s so tricky

Author : leedavidson158
Publish Date : 2021-06-14 02:31:35


How virus detectives trace the origins of an outbreak – and why it’s so tricky

How virus detectives trace the origins of an outbreak – and why it’s so tricky
Every time there is a major disease outbreak, one of the first questions scientists and the public ask is: “Where did this come from?”

In order to predict and prevent future pandemics like COVID-19, researchers need to find the origin of the viruses that cause them. This is not a trivial task. The origin of HIV was not clear until 20 years after it spread around the world. Scientists still don’t know the origin of Ebola, even though it has caused periodic epidemics since the 1970s.

As an expert in viral ecology, I am often asked how scientists trace the origins of a virus. In my work, I have found many new viruses and some well-known pathogens that infect wild plants without causing any disease. Plant, animal or human, the methods are largely the same. Tracking down the origins of a virus involves a combination of extensive fieldwork, thorough lab testing and quite a bit of luck.

dang-nan-ren-lian-ai-shi-man-in-love-hd1080p-xian-shang-kan

Viruses jump from wild animal hosts to humans
Many viruses and other disease agents that infect people originate in animals. These diseases are zoonotic, meaning they are caused by animal viruses that jumped to people and adapted to spread through the human population.

It might be tempting to start the viral origin search by testing sick animals at the site of the first known human infection, but wild hosts often don’t show any symptoms. Viruses and their hosts adapt to each other over time, so viruses often don’t cause obvious disease symptoms until they’ve jumped to a new host species. Researchers can’t just look for sick animals.

Another problem is that people and their food animals aren’t stationary. The place where researchers find the first infected person is not necessarily close to the place where the virus first emerged.

In the case of COVID-19, bats were an obvious first place to look. They’re known hosts for many coronaviruses and are the probable source of other zoonotic diseases like SARS and MERS.

dang-nan-ren-lian-ai-shi-dang-nan-ren-lian-ai-shi-xian-shang-kan

For SARS-CoV-2, the virus that causes COVID-19, the nearest relative scientists have found so far is BatCoV RaTG13. This virus is part of a collection of bat coronaviruses discovered in 2011 and 2012 by virologists from the Wuhan Virology Institute. The virologists were looking for SARS-related coronaviruses in bats after the SARS-CoV-1 pandemic in 2003. They collected fecal samples and throat swabs from bats at a site in Yunnan Province about 932 miles (1,500 kilometers) from the institute’s lab in Wuhan, where they brought samples back for further study.

To test whether the bat coronaviruses could spread into people, researchers infected monkey kidney cells and human tumor-derived cells with the Yunnan samples. They found that a number of the viruses from this collection could replicate in the human cells, meaning they could potentially be transmitted directly from bats to humans without an intermediate host. Bats and people don’t come into direct contact very often, however, so an intermediate host is still quite likely.

Finding the nearest relatives
The next step is to determine how closely related a suspected wildlife virus is to the one infecting humans. Scientists do this by figuring out the genetic sequence of the virus, which involves determining the order of the basic building blocks, or nucleotides, that make up the genome. The more nucleotides two genetic sequences share, the more closely related they are.

dang-nan-ren-lian-ai-shi-wan-zheng-ban-zai-xian-guan-kan-he-xia-zai-wan-zheng-dian-ying-2021

Genetic sequencing of bat coronavirus RaTG13 showed it to be over 96% identical to SARS-CoV-2. This level of similarity means that RaTG13 is a pretty close relative to SARS-CoV-2, confirming that SARS-CoV-2 probably originated in bats, but is still too distant to be a direct ancestor. There likely was another host that caught the virus from bats and passed it on to humans.

Because some of the earliest cases of COVID-19 were found in people associated with the wildlife market in Wuhan, there was speculation that a wild animal from this market was the intermediate host between bats and humans. However, researchers never found the coronavirus in animals from the market.

Likewise, when a related coronavirus was identified in pangolins confiscated in an anti-smuggling operation in southern China, many leaped to the conclusion that SARS-CoV-2 had jumped from bats to pangolins to humans. The pangolin virus was found to be only 91% identical to SARS-CoV-2, though, making it unlikely to be a direct ancestor of the human virus.

7D-re-dai-wang-shi-xian-shang-kan-xiao-ya-wan-zheng-ban-are-you-lonesome-tonight-wan-zheng-ban-~gao-qing-dian

To pinpoint the origin of SARS-CoV-2, a lot more wild samples need to be collected. This is a difficult task – sampling bats is time-consuming and requires strict precautions against accidental infection. Since SARS-related coronaviruses are found in bats across Asia, including Thailand and Japan, it’s a very big haystack to search for a very small needle.

Creating a family tree for SARS-CoV-2
In order to sort out the puzzle of viral origins and movement, scientists not only have to find the missing pieces, but also figure out how they all fit together. This requires collecting viral samples from human infections and comparing those genetic sequences both to each other and to other animal-derived viruses.

To determine how these viral samples are related to each other, researchers use computer tools to construct the virus’s family tree, or phylogeny. Researchers compare the genetic sequences of each viral sample and construct relationships by aligning and ranking genetic similarities and differences.

The direct ancestor to the virus, sharing the greatest genetic similarity, could be thought of as its parent. Variants sharing that same parent sequence but with enough changes to make them distinct from each other are like siblings. In the case of SARS-CoV-2, the South African variant, B.1.351, and the U.K. variant, B.1.1.7, are siblings.

yang-guang-jie-mei-tao-wan-zheng-ban-zai-xian-guan-kan-he-xia-zai-wan-zheng-dian-ying-2021

Building a family tree is complicated by the fact that different analysis parameters can give different results: The same set of genetic sequences can produce two very different family trees.



Category : news

Copado-Developer Exam Questions

Copado-Developer Exam Questions

- Get your certification done in first attempt with the best practice material in the form of PDF dumps and latest Online Engine on Certshero.


Prince Harry Arrives In the UK Ahead of Prince Philips Funeral

Prince Harry Arrives In the UK Ahead of Prince Philips Funeral

- Prince Harry has returned to the U.K. The Duke of Sussex arrived in the U.K. on Sunday to attend Prince Philips upcoming funeral, ET has learned.


full tom and jerry  movie 2021

full tom and jerry movie 2021

- full tom and jerry movie 2021 _ full tom and jerry movie 2021-full tom and jerry movie 2021-full tom and jerry movie 2021-full tom and jerry movie 2021


The Secrets to Pass Cisco 300-435 Certification Exams With Ease

The Secrets to Pass Cisco 300-435 Certification Exams With Ease

- Marketing automation is one of the great processes that help not only to automate their repetitive marketing tasks. On earth with the promotion class.